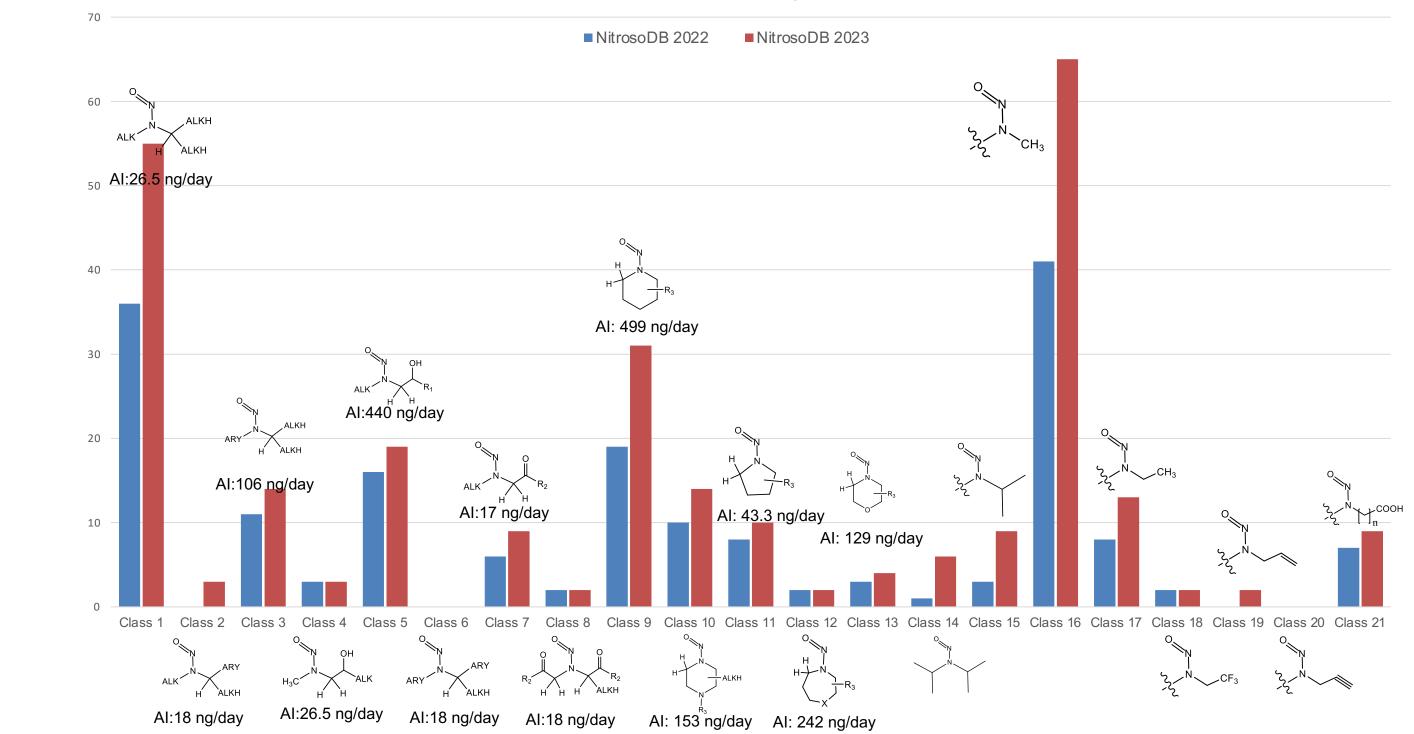


Exploring Local Structural Environments of Nitrosamine Analogs to Improve Carcinogenicity Read-Across Assessments

Roustem Saiakhov

MultiCASE Inc, 5885 Landerbrook Dr. Ste 210, Mayfield Heights, OH 44124, USA


Abstract

Assessing the carcinogenic potency of N-nitrosamines, especially nitrosamine drug substance-related impurities (NDSRIs), is crucial as these compounds have been identified as potent carcinogens in animals and are suspected to be carcinogenic in humans. One way to assess N-nitrosamine's carcinogenic potency is to use structural analogs with known carcinogenic data. However, the current database of N-nitrosamines with known carcinogenic data is limited, hindering the ability to assess their carcinogenic potency accurately. Enhancing the chemical space of the N-nitrosamine database by including more structurally diverse compounds will improve the assessment of their carcinogenic potency.

In this study, we evaluated the effect of adding additional Nnitrosamines to the existing QSAR Flex N-nitrosamine potency database of 135 compounds. We identified 59 additional Nnitrosamines with reported experimental data in the public literature. In addition, we explored the structural environment of the newly added compounds compared to the previously compiled dataset and the effect of the expansion of the chemical space on our ability to predict the carcinogenic potency of NDSRIs more efficiently. Our results showed that the expanded chemical space of the QSAR Flex N-nitrosamine carcinogenic potency database coupled with enhanced algorithms for calculating similarity and with the improved workflow of selecting the proper structural analogs improves the quality of the carcinogenic potency assessments. These findings, as well as the workflow, are illustrated in several case studies. Our study highlights the importance of expanding the chemical space of the database for a more accurate assessment of carcinogenicity and improving our ability to protect human health.

Results

There is an improvement in coverage for 15 structural types of N-Nitrosamines (NA) out of 21. The biggest improvement is observed for the structural types, potentially decreasing the carcinogenicity of NAs.

Class 1	Dobo's group 1
Class 2	Dobo's group 2
Class 3	Dobo's group 3
Class 4	Dobo's group 4
Class 5	Dobo's group 5
Class 6	Dobo's group 6
Class 7	Dobo's group 7
Class 8	Dobo's group 8
Class 9	Dobo's group 9
Class 10	Dobo's group 10
Class 11	Dobo's group 11
Class 12	Dobo's group 12
Class 13	Dobo's group 13
Class 14	Sterically hindered both sides
Class 15	Sterically hindered one side
Class 16	Methyl group on either side
Class 17	Ethyl group on either side
Class 18	Beta CF3
Class 19	Beta allyl group
Class 20	Beta propargyl group
Class 21	Carboxilic acid anywhere

Structural domain coverage of the databases

Data

NitrosoDB release version 2022

153 N-Nitrosamines 138 positives, 15 negatives.

Data sources:

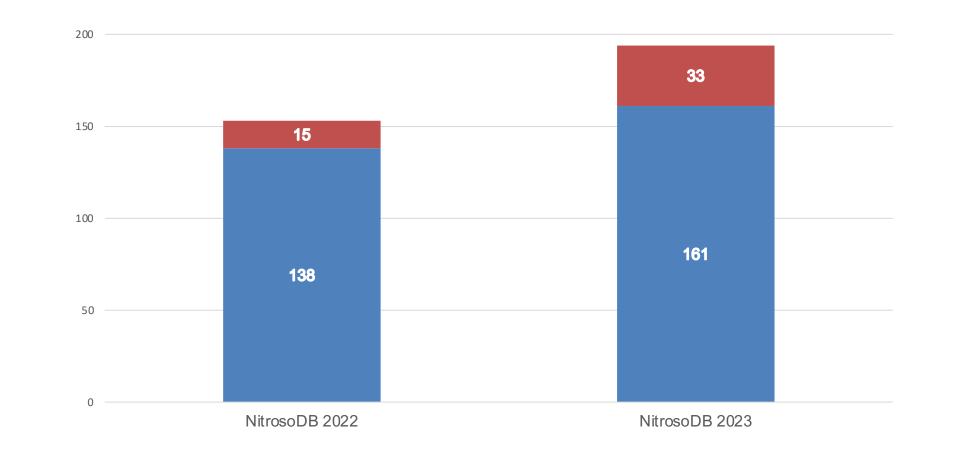
CPDB¹: 153 Chemicals

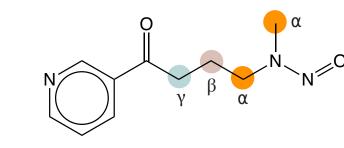
LHASA Carcinogenicity Database²: 49 Chemicals

NitrosoDB release version 2023

New data sources, additional chemicals Druckrey at al³: 41 Chemicals Dobo at al⁴: 16 Chemicals Structural classes identified based on Dobo et al⁴ and Pointing et al⁵

Effect on assessing the potential carcinogenicity of NDSRIs


With the increased coverage of the NitrosoDB database, more relevant surrogates are identified by the enhanced read-across technique.


Registry Number	Chemical	Alert Env. Similarity	Whole Structure Similarity	Name	Mol. Wt.	CPDB TD50 (mg/kg/day)	LHASA TD50 (mg/kg/day)	Registry Number	Chemical	Alert Env. Similarity	Whole Structure Similarity	Name	Mol. Wt.	CPDB TD50 (mg/kg/day)	LHASA TD50 (mg/kg/day)
0		1.000	1.000	N-Nitrosopropranolol	288.347	-	-	0		1.000	1.000	N-Nitrosopropranolol	288.347	-	-
76014-81-8		0.517	0.231	4-(METHYLNITROSAMINO)-1-(3-PYRIDYL)-1-BUTANOL	209.249	0.103*	-	76014-81-8		0.517	0.231	4-(METHYLNITROSAMINO)-1-(3-PYRIDYL)-1-BUTANOL	209.249	0.103*	-
64091-91-4		0.517	0.185	4-(METHYLNITROSAMINO)-1-(3-PYRIDYL)-1-(BUTANONE)	207.233	0.100*	0.142*	64091-91-4		0.517	0.185	4-(METHYLNITROSAMINO)-1-(3-PYRIDYL)-1-(BUTANONE)	207.233	0.100*	0.142*
89911-78-4		0.483	0.238	3-((2-hydroxyethyl)nitrosamino)-1,2-propanediol	164.161	5.980*	6.040*	16339-21-2		0.500	0.101	N-methyl-N-(2-methyl-4-oxopentan-2-yl)nitrous amide	158.201	10000.000*	-
17608-59-2	OH OH	0.473	0.250	N-Nitrosoephedrine	194.234	95.200*		89911-78-4		0.483	0.238	3-((2-hydroxyethyl)nitrosamino)-1,2-propanediol	164.161	5.980*	6.040*
86451-37-8		0.467	0.259	N-NITROSOMETHYL(2,3-DIHYDROXYPROPYL)AMINE	134.135	0.646*		17608-59-2		0.473	0.250	N-Nitrosoephedrine	194.234	95.200*	-
89911-79-5		0.433	0.272	N-NITROSO(2,3-DIHYDROXYPROPYL)(2-HYDROXYPROPYL)AMINE	178.188	0.054*		86451-37-8		0.467	0.259	N-NITROSOMETHYL(2,3-DIHYDROXYPROPYL)AMINE	134.135	0.646*	-
66398-63-8		0.417	0.173	N-Nitrosomethyl-(2-tosyloxyethyl) amine	258.299	4.800*		89911-79-5		0.433	0.272	N-NITROSO(2,3-DIHYDROXYPROPYL)(2-HYDROXYPROPYL)4	178.188	0.054*	-

COMPOSITION OF THE DATABASES

Positive
Negative

Surrogate (TD₅₀ = 0.142 mg/kg/day)

Position	R ₁	R ₂
α •	CH ₂	CH ₃
β •	CH ₂	-
γ	CH ₂	-
Cyclic?	N	0

Query NDSRI

Position	R ₁	R ₂		
α•	CH ₂	$CH(CH_3)_2$		
β •	CH-OH	-		
γ •	CH ₂	-		
Cyclic?	No			

α	
β	
α	

Surrogate (TD₅₀ = 1.580 mg/kg/day)

Position	R ₁	R ₂		
α •	CH ₂	$CH(CH_3)_2$		
β •	CH ₃	-		
γ •	-	-		
Cyclic?	No			

Conclusions

Our study highlights the importance of expanding the chemical space of the N-nitrosamine carcinogenic potency database for a more accurate assessment of carcinogenicity and improving our ability to protect human health

References

¹ CPDB database , https://files.toxplanet.com/cpdb/index.html

² Thresher, T., Gosling J, P., Williams, R. Generation of TD50 values for carcinogenicity study data. Toxicology Res; 8: 696-703; (2019).

³ Drukcrey, et al "Organotropic carcinogenic effects of 65 various N-nitroso- compounds on BD rats." Z Krebsforsch.; 1967; 69; 2; 103-201.

 ⁴ Dobo, et al. "Practical and Science-Based Strategy for Establishing Acceptable Intakes for Drug Product N-Nitrosamine Impurities." Chem Res Toxicol . 2022 Mar 21;35(3):475-489
 ⁵ Ponting, et al. "Strategies for Assessing Acceptable Intakes for Novel N -Nitrosamines

Derived from Active Pharmaceutical Ingredients." Journal of Medicinal Chemistry, November 28, 2022.