A Comprehensive Set of Structural Keys for N-Nitrosamine Fingerprinting and Determining Surrogate Relevance in Carcinogenic **Potency Assessments**

Suman Chakravarti*, Roustem D. Saiakhov MultiCASE Inc., Mayfield Heights, OH 44124, USA

EUROTOX 2024 COPENHAGEN

*email: chakravarti@multicase.com

Purpose

- Identify structural features for efficient searching and quantitative comparison of nitrosamine surrogates.
- Identify surrogates that mimic the reactivity and structure of complex Nitrosamine Drug Substance Related Impurities (NDSRIs).
- \circ Identify features that affect CYP-450 mediated α hydroxylation of nitrosamines and their carcinogenic potency.

Data

- A set of 209 small nitrosamines with available animal Ο carcinogenicity data were used as surrogates.
- 620 pairs of xenobiotic substrate-metabolite pairs were used to build the α -CH₂ hydroxylation QSAR models.

Similarity Measure

• For FP-1, Tanimoto similarity was used.

Methods

Feature Sets

We assembled three structural feature sets relevant to Nnitrosamines' carcinogenic potency:

1. CPCA^{1,2} Based Structural Keys (FP-1)

- \circ Various combinations of α -H counts.
- Carboxylic group anywhere.
- Various types of ring memberships.
- Various activating and deactivating features.
- Calculated activating and deactivating scores
- Fingerprint length = 33 bits.

2. Atom Types Around the N-N=O Moiety³ (FP-2)

- Atoms up to 5 bond distance were used.
- Different atom types were counted at each bond depth.
- Atom types were defined using element type, hybridization, H Ο counts, aromaticity, ring membership etc. – total 193 atom types.

For FP-2, the fraction of atom type and ring membership matches between two nitrosamines were used as the similarity measure.

Figure 3. Computing similarity between an NDSRI and a nitrosamine surrogate using CPCA-based structural keys (FP-1)

Query NDSRI (N-nitroso Reboxetine)

EMA AI = 127 ng/day

Surrogate	TD ₅₀ (mg/kg/day)	Robustness of Carcinogenicity Study	Regulatory Al (ng/day)	Predicted CPCA AI (ng/day)	α-H Count & Score	Feature Scores
N – N – O Sim. = 1.000 59-89-2 NMOR, N-nitroso-morpholin	0.12	***	HC = 127 EMA = 127	100	(2, 2) Score = 1	Deact. = 1 Act. = 0
$H_{3}C$ H	1.22	*	_	18 or 26.5	(2, 2) Score = 1	Deact. = 1 Act. = -1
HON = O N 	0.02	**	_	100	(2, 2) Score = 1	Deact. = 1 Act. = 0

Fingerprint length = 990 bits, consists of 5 equal segments.

Figure 1. Generating a fingerprint using the counts of various atom types around the nitrosamine moiety

3. Metabolic α-CH₂ Hydroxylation Modulators⁴

• Consists of activating and deactivating structural features that influence α -carbon hydroxylation.

Table 1. Identified top surrogates for the NDSRI using the CPCA based fingerprint (FP-1)

Registry Number	Chemical	Similarity	Name	Mol. Wt.	CPDB TD50 (mg/kg/day)
34993-08-3		0.666	3-Methyl-4-nitroso-2- phenylmorpholine	206.245	10000
55557-03-4		0.644	N-Nitroso- methylphenidate	262.309	10000
1456-28-6		0.575	2,6-dimethyl-N-nitroso- morpholine	144.174	1.22

 \circ Identified using QSAR modeling of α -carbon hydroxylation in xenobiotic CYP metabolism.

Figure 2. Examples of some deactivating features (i.e., inhibits α -CH₂ hydroxylation) identified from QSAR modeling

References

Table 2. Identified top surrogates for the NDSRI using the general atom type-based fingerprint (FP-2)

Conclusions

- Expert visual assessment confirmed the fingerprints' effectiveness in Ο identifying suitable surrogates for NDSRI intake limits.
- CPCA feature-based fingerprints (FP-1) outperform traditional atom Ο type fingerprints (FP-2).
- Fingerprints offer a quantitative measure of nitrosamine similarity, Ο relevant for their carcinogenic potency.

[1] US FDA; Recommended Acceptable Intake Limits for Nitrosamine Drug Substance-Related Impurities (NDSRIs) Guidance for Industry. 2023; [2] EMA. Questions and answers for marketing authorisation holders/applicants on the CHMP Opinion for the Article 5(3) of Regulation (EC) No 726/2004 referral on nitrosamine impurities in human medicinal products; [3] Kruhlak et al., A New Structural Similarity Method to Identify Surrogate Compounds for Assessing the Carcinogenicity of Nitrosamine Impurities, SOT Annual Meeting, San Diego, Poster, 2022; [4] Chakravarti, S.K., Computational Prediction of Metabolic α-Carbon Hydroxylation Potential of N -Nitrosamines: Overcoming Data Limitations for Carcinogenicity Assessment. Chem. Res. Toxicol. 2023, 36, 959-970.